ADA100103

g
»
»
~ Computer Systems Management, Inc.
s 7300 WILSON BOULEVARD, SUITE 102 * ARLINGTON, VIRGINIA 22209
: 1
pix

i
?’
E
]
|
{
s
r
i

TECHNICAL REPORT 81-02

Quarterly Technical Report:

Microcomputer Software Enginesring,
Documentation and Evaluation

by

James F. Wittmeyvyer, [l

Computer Systems Management, Inc.

1300 WILSON BOULEVARD, SUITE 102
ARLINGTON, VIRGINIA 22209

TECHNICAL REPORT 81-02

q9)

/ /‘ MICROCOMPUTER SOFTWARE ENGINEERING,

DOCUMENTATION AND EVALUATION) 84 Maor 7

ARPA Order No.:

Contractor:

Effective Date
of Contract:

Contract Expiration
Date:

Contract No.:

Principal Investigator:

Contract Period
Covered:

Short Title of Work:

This research was sponsored by the Defense Advanced Research
Projects Agency under ARPA Order Number 3829; Contract Number
MDA903-80-C-0155; and Monitored by DSS-W. The views and con-
clusions contained in this document are those of the author

and should not be interpreted as necessarily representing the
official policies, either express or implied of the Defense
Advanced Research Projects Agency or the United States Government.

S—— Y

" QUARTERLY TECHNTCAL RERSRTZ, -1 Jar -3L Mard b |

/3" wpagp3-so-c- 0155‘//?12/% ro =373

0!

-

-9

1Yz sm-g2-42

Computer Systems Management, Inc.
1300 Wilson Boulevard, Suite 102
Arlington, Virginia 22209

4
11/5/79 A

9/30/81

Mr. James F. Wlttmeyer, III
(703) 525-8

l/1/81 - 3/31/81

Microcomputer Software Engineering,
Documentation and Evaluation

¢11§€

a o T v v
. e AT . - ,_._:ﬂ

UNCLASSIFIED .
SECURITY CLASSIFICATION OF THIS PAGE ('bon Dete Entered)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVY ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
o B “AD-LpoEpt
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
Microcomputer Software Engineering, Quarterly Technical
Documentation and Evaluation 1,/1/81 - 3/31/81
6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a) 8. c-o:::nc'r OR GRANY NUMBER(s)
James F. Wittmeyer, III MDA903-80-C-0155
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::gg%A:oianissrT‘l’“I:::‘OaJECSY TASK
Computer Systems Management, Inc. DARPA Order Number
1300 wilson Boulevard 3829
Arlington, Virginia 22209
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
DARPA 3/31/81
1400 Wilson Boulevard 13. NUMBER OF PAGES
Arlington, Virginia 22209 45
14, MONITORING AGENCY NAME & ADDRESS({1! ditferent from Controlling Olfice) 15. SECURITY CLASS. (of thie report)
Defense Supply Service-Washington (DSS-W) Unclassified
The Pentagon
Washington, D.C. 15a. gg’c‘:é.gatngucAnon/oowucnoma

16. DISTRIBUTION STATEMENT (of this Report)
Recommended for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, it dilferent from Report)

Recommended for public release; distribution unlimited.

18. SUPPLEMENTARY NOTES

None.

19. KEY WORDS (Continue on reverse sida If necessary and Identify by block number)

Microcomputers; software engineering; software evaluation;
documentation.

ZO.X—L‘TBS‘ITACT (Caotiomue en reverss side If meceesary amd identily by block number)

Microcomputer software for defense applications should be
engineered structurally, informed by requirements analyses,
documented unconventionally if necessary, and systematically
evaluated against an explicit set of performance criteria.

~

"

DD , :::‘n 1473 EDITION OF ! NOV 65 1S OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF TNIS mAGE (When Data Entered)

SUMMARY

This Quarterly Technical Report covers the period from
January 1, 1981 to March 31, 1981. The tasks/objectives and/
or purposes of the overall project are connected with the design,
development, demonstration, documentation, and transfer of
advanced command and control (C2) computer~based systems; this
report covers work in the microcomputer software engineering,
documentation, and evaluation areas. The technical problems
addressed include structured programming, unconventional docu-
mentation, and multi-attribute utility-based software evaluation.
The general methods employed include software requirements
informed structured programming, animated and computer=-controlled
fiche-based documentation systems, and computer-based software
evaluation systems. Technical results include recommendations
regarding production rule software selection systems, animated/
fiche-based documentation systems, and multi-attribute utility
models for software evaluation. Future research will present

additional research on microcomputer software and systems design
and development.

iii

FrCholao 1ok BLANKeNOL Fllebl

CONTENTS
Page
SUMMARY iii
FIGURES v
TABLES vi
1.0 INTRODUCTION 1
2.0 MICROCOMPUTER SOFTWARE ENGINEERING 2
2.1 Requirements 2
2.1.1 Response Time 2]
2.1.2 Operating Time 4
2.1.3 Program Status 5
2.1.4 Support Requirements
2.2 Microcomputer Software Languages 5
2.3 Programming Methods 7
2.3.1 Planning 9
2.3.2 Software Economy 9
<.3.3 Software Psychology 10
2.4 Software Engineering Guidelines and
Recommendations 11
3.0 MICROCOMPUTER SOFTWARE DOCUMENTATION 13
4.0 MICROCCMPUTER SOFTWARE EVALUATION 15
4.1 The Evaluation Methodology 15
4.2 EVAL 16
4.3 A Microcomputer Software Evaluation
System 20
5.0 CONCLUSION 24
6.0 REFERENCES 25
APPENDIX A - "Structured Prcgramming and Structured
Flowcharts" 27
APPENDIX B - "What is Good Documentation?” 36

iv

FIGURES

Interrelationships Between Different Types of
Software

Format of a Multi-Attribute Utility Assessment
Model

Boehm, et al. s Software Characteristics Tree

A Microcomputer Software Evaluation Model

r
]
2
4
{

18

22

23

TABLES

[Page

j

3 I/0 Operation Time 3

p

E L] »

y Processing Response Times 4
4

Application Operating Times

T RO

vi

1.0 INTRODUCTION

Microcomputer "programming is a labor-intensive manufac-
turing process" (Lewis, 1979). Each year the Department of
Defense (DoD) spends billions of dollars on all kinds of macro-
and minicomputer software projects, hundreds of millions on
microcomputer programming, but relatively little on software
engineering, documentation, and evaluation research. This report
thus focuses upon several approaches and technigques designed to
improve the processes by which we program microcomputers, docu-
ment microcomputer software, and evaluate software gquality and
performance--all with reference to DoD research and development

needs, requirements, and priorities.

Section 2.0 of this report presents techniques for enhanced
microcomputer software engineering. Section 3.0 looks at several
useful microcomputer software documentation techniques, while
Section 4.0 presents a mult.-attribute utility-based model for

software evaluation,

22

2.0 MICROCOMPUTER SOFTWARE ENGINEERING

2.1 Reguirements

Ideally before one attempts to build a microcomputer pro-
gram an effort is made to identify and define the driving
functional requirements which together comprise the reason(s)
why one attempts to build a problem-solving software system

(instead of some other kind of problem-solving system).

At the most basic level are several requirements which are
specific context and applications independent; that is, they
are relevant to all instances of microcomputer programming
regardless of for whom and/or what the software is to be devel-

oped.

2.1.1 Response Time - The first is response time. Note

that the issue here is not how fast or slowly the system responds
to a particular user vis-a-vis a particular task, but how fast
or slowly it responds generally. This kind of speed (or slowness)
is a function of the software language used and the microcomputer
system I/0 device times. The figure below, from Barden (1979),

presents the total response time for some standard I/O operations.

TRy T

Operation 1/O Device Time
Print line of 64 characters. Teletype 7 seconds
Print line of 64 characrers. IBM Selectric 4 seconds
Print Line of 64 characters. Dot-matrix 1-2 seconds

Print Line of 64 characters

Display 1024 characters
(entire screen
Display 1024 characte-s
{entre screen

Read or write one 100-character
record randomly on tape

Read or write one 100-chara.ter
record to next positor on tape

Read or write one 12B-character
record randomly on floppy d&b

Read or write one 128-character
record 1o next pos hon On J.es

electrosensitive printer
Dot-matrix

impact printer

Video display
interface

Crt terminal

Aydio tape cassette
with automatic o
manual sea'ch
Audio tape cassette
30 ¢ps
2C0 cps
Small floppy disk (5 in}
Large floppy disk (8 n
Small flopp, disk
Large floppy disx

1-2 seconds

second

N

seconds

[X]

mmnytes

5 seconds
3 seconds

L2 second

'3 secord

close 10 O

I/ O Operation Time

But many operations are non-I/0O-oriented, depending instead

upon the skill of the programmer and efficiency of the program,

which, in turn, depends upon the characteristics of the language

used and whether or not the

(higher-1level)

language is compiled

or interpreted in operation, as suggested below (Barden, 1979).

G e s e e I

A bly Compiler interpereter-
Language Language Language
Function System System System
Muttiply 1000 numbers of
various sizes 1 ms éms bs
Divide 1000 numbers of
various sizes 1.5ms 9ms 9s
Insert a3 20-character string in
the middle of 1000 characters
of text 7.5ms 75 ms 10s
Sort (alphabetize; a list of 100
20-character names O1ls 2 8 min
Merge 20 names into 8 hst of
100 20-character names 25 ms 05s 2 min
Search 100 20-character ran-
dom'y ordered names 4 ms 40 ms 15
Search 100 20-character alpha-
betized {(or otherwise ordered’
names 0.4 ms 4 ms 1.5

Processing Response Times

2.1.2 Operating Time - Operating time egquals I/0O time and

processing time. But the processing time is always dependent upon
the software languages used, the form of the language, and, of
course, the efficiency of the programmer, all as suggested below

(Barden, 1979).

A bly- Compil Intorprete
Languag Langueg Language
Application Systom System Systom
Sort and print 1000 names for
mailing list; 100 charscters/
entry, disk system 25 min 25 min 105 min
Genergte inventory report of
1000 items; 100 characters’
item; disk system 25 min 30 min 4\ min
Response time for locating and
display of one random asccount
from 2000, disk system 5 5 30

Application Operating Times

2.1.3 Program Status - Another requirement has to do with

the status of the program to be developed. Programs which are
fundamentally prototypical or experimental usually bear no
resemblance to production (systems or applications) programs.
Similarly most programs developed as an initial outgrowth of
research and development are iterative in their evolution and
should therefore be developed differently from programs intended

for wide distribution and use.

2.1.4 Support Requirements - Not unrelated to all of the

above are support requirements. Is the program tc be transferred
for on-line use? Or is it to be used off-line by research and
development counterparts? Such guestions determine to what
extent the software must be self-contained, among other consider-

ations.

2.2 Microcomputer Software Languages

Response and operating time requirements, the status of
the program, and support requirements, among many other conceiv-
able requirements, should determine the selection of a software
language. Indeed, a set of guidelines regarding the use of one
or more languages, of the nature presented below, should be
developed and u;j Jated frequently in order to ensure the most
prudent and practical use of one or another language. In any cas

the first task is to understand the relationships among the dif-

———
=

e

ferent types of software, as presented below (Frenzel, 1979).

SOF TWARE

[B
APPLICATIONS SYSTEMS
PROGRAMS PROGRAMS
[|
YSTEM
LANGUAGES SYoTENS

|]

LOW HIGH OPERATING 1TOR ITOR
(e, FErene | [e owTo
rﬁ
MACHINE ASSEMB. Y | INTERPRETE R
[LANGUAGE LANGUAGE AJ COMPILER [NTERPRETE
r FORTRAN “' [7 PaASCAL _] (BASIC] APL]

Interrelationships berween different tvpes of software

In addition to such relationships are those which surround the
requirements, available capabilities, and optimal lanauage
selection. (Note that for the purposes of this exemplar exercise
substantive requirements are not suggested since they differ

from case to case.) For example,

e If response time and operating time is
1mportant then one should, assuming
programming competence, use compiler
rather than interpretive languages for
production systems;

e If a system is by definition iterative
then interpretive languages should be
utilized; and

e If the talent (capability) exists, then
machine and assembly languages should
be used to maximize the speed of pro-
duction systems, and so forth.

"y

The point here is that based upon existing empirical studies

lgiand Aot Sl g,

it 1s possible to develop sets of guidelines about the selection

of software programming lanqguages against explicit requirements.

Ty

Such guidelines might even be computerized in a developmental

reference system which could be used by research and development
managers, programmers, and higher-level decision-makers who must
make major software investment decisions. Such a production
rule system would make systematic a selection process that is

now dominated by preference and accessibility.

2.3 Programming Methods

It is difficult to list or define the myriad methods now
utilized by programmers. Candidly, most do not have methods
which are reproducible (even by themselves) or verifiable.
Instecad, they usually begin with what they perceive to be the
pivotal processing function and they build around it. Most

seldom even flow-chart what they intend to program.

Proposed below are several structuring technigques designed

specifically to improve microcomputer programming (also see

Apperdix A for a reprint of an article on structured programming).

o7 . s Cee e N _

- e PP P . B _——-;1

In reality they are presented to avoid scenarios like the fol-

lowing (Lewis, 1979):

Peter Plodder 1s slow, methodical, and very meticulous. A mild-
mannered, quiet person (with good taste in clothes), he had the irritating
habit of 1ssuing long project completion times to his supenisor. Bluster-
ing Barton, on the other hand, was a flashy, outspoken superprogrammer
who consistently completed his programming assignments ahead of the
most oplimistic estimaltes.

The Softuare Division management loved Blust, but hardly kneuw
Peter was alwe. Corsequently, Blust was granted a six-month leave of
absence—a biscuit for his programming accomplishments. A temporary
programmey was hired to mamtam Blust's code while he was auway.

Six weeks after Barton embarked on a plane for Africa, his payroll
system program failed. The substitute programmer immediately plunged
nto Barton’s program (o try to 1solate the bug. Perhaps not so surpris-
igly, he was never able to break into the code. In Blustering Barton's
race o produce code, he neglected 1o write easy-to-understand programs,
and his documentation was a mess. In short, only Barton himself could
repatr the programs he had written.

Meanuhile, back at the desk of Peter Plodder business was progress-
ing as usual. Orgamization and clearly documented programs were hus
trademark. In fact, Peter uas called on to tr, to find the bug in Barton's
payroll program. His time estimate for the debugging task uas customar-
iy protracted. but the management had no chotce. With Blustering Barton
auay and the temporary programmer stymied, they had to go with Peter.

Eventually the bug uas located and corrected. but everyone knew
the superprogrammer had stumbled. Summanly, neuw programming
standards were smplemented. Peter was tnuited to teach the other gro-
grammers hou to write readable code. He shouwed everyone (including
Blustering Barton, when he returned;, houw to make programs self-
documenting. His methodology was adopted as the only acceptable
methodology to be used throughout the Softuware Duvision.

Sound familiar? Unfortunately, a great many defense research
programmers are "flashy, outspoken superprogrammers" who produce
jumbled, undocumented software. Conseguently, enhancements,
modifications, and technology transfer are all made more diffi-

cult and much more expensive.

2.3.1 Planning - Structured microcomputer programming is
very similar to decision analysis-based problem-solving because

it rests upon the principle of problem decomposition (Williams,

1981; Yourdon, 1979; and Ross, et al., 1975). The functions
that the program is to perform should inform the decomposition
process, and, much like a multi-attribute utility assessment
structure, represent functions decomposed to their smallest
component units. In this way programmers can adhere to a simple
rule of thumb: software solutions should never be more complex

than the problems they are intended to solve.

2.3.2 Software Economy - Lewis (1979) bluntly states that

programmers should "never write a large program." Instead, he
argues convincingly that programmers should write and collect
"speedcode modules" that incorporate all of the basic algorithms
which the programmer has previously used. Then the modules
should be refined onto different microcomputers in different

languages.

In a previous report (Wittmeyer, 1980) a design for the
development of generic microcomputer-based command and control
(Cz) decision and forecasting systems was presented which was
based in part upon the use of pre-programmed software modules.
It was even suggested that the routine C2 decision and fore-

casting systems functions probably numbered less than twenty-

five. If this is true then a series of modules (for retrievinag

D -, L - . v
P A“‘wﬂ‘
- . .

I

and displaying empirical data, for calculating value, and making
inferences, and so forth) could be developed and used over and
over again. Similarly, it wculd be possible to identify and
develop modules for information management, training, and generic

information display.

Interestingly, most defense software efforts begin from
ground-zerc and even often ignore previous efforts undertaken
by the attencding programmer! Clearly a great deal of programming
economy can be gained by reviewing existing software and developing

reusable software modules.

2.3.3 Software Psychology - All programming methodology

must be applied within a particular personnel context; indeed
all of the abcve presumes the existence of highly talented,
dedicated programmers who are as knowledgeable about hardware

as they are about software. Unfortunately, virtuallyv every

projection available today indicates that throughout the 1980s

a critical shortage of programmers will persist. We must there-
fore maximize the output of those programmers which we do employ.
Learning, designing, composition, comprehension, testing, de-
bugging, documentation, and modification capabilities must all

be evaluated and improved. PEerHips for—tie ~firsttime...seriqus N

programming managers must pay very special attention to the
overall programming environment, the components of which include

the physical, social and managerial environments.

10

Y Y R T T

e

i o ol iy e

2.4 Software Engineering Guidelines and Recommendations

Requirements analyses should precede programming. Require-
ments should be matched to software characteristics, and then
recommendations regarding how to write the software should be
generated. 1In fact, there is no reason why a production rule
system such as RITA (Anderson and Gillogy, 1976) could not be
used for this purpose. Such a software requirements/software
characteristics/programming structure system might be of invalu-
able use to DARPA researchers specifically and to DoD generally,
and might function as follows: users could input requirements
consisting of operating and response time requirements, program
status requirements, support requirements, among any number of

other requirements and the computer system, from a knowledge

base consisting of software characteristics (updated continually),

would then make recommendations regarding optimal programming
efficiency in structured pseudocode supplemented by graphic
flowcharts of same. It might also suggest the use of pre-pro-
grammed software modules about which it has been given detailed
information. The information about software form and language
characteristics could be consensus "expert" data or data gleaned
from empirical experiences with the software; regardless, the
system wcould enable microcomputer programmers to benefit from
existing experience with and information about microcomputer

software and thereby generate more efficient code.

11

This idea is aimed at supporting the microcomputer program-
mer; more advanced ideas may very well result in computer gen-

erated software in the not too distant future.

12

3.0 MICROCOMPUTER SOFTWARE DOCUMENTATION

Without effective documentation software dies a slow and
painful death. Along the way software research progress is
encumbered, demonstrations are complicated, and technology
transfer is undermined. Interestingly, while the disasterous
effects of non-existent or poor documentation are widely veri-
fiable, few are willing to allocate resources aimed at
improving documentation techniques. The reason is simple:
documentation and documentation research are relatively boring
analytical subtasks connected with the potentially exciting

design and development of microcomputer~based systems.

At the same time, some effort has been made to define and
improve documentation (see Appendix B), and given the progress
recently made in voice input/output system development, video
technology, interactive graphics technology, and computer-
controlled microfiche systems development, it is now possible
to experiment with the development of several variations of
unconventional documentation not possible just five years ago.
For example, systems should be programmed to introduce and
explain themselves in a manner not unlike that which is used
by manufacturing vendors. Such demonstrations could be of
invaluable help to those who must convinve others that what

they have developed may be of real use. Documentation should

13

e - —1-;_...* _ . . I -j

also be transformed from the inanimate to the animate. Computer-
generated system specifications and functional descriptions can
be of immense transfer use, as can on-line users manuals. Simi-
larly, films of documentation can also help to bridge the gap
between the developer and the user. Here computer-controlled
fiche could be used to minimize cost, time delay, and obsolescence.
Similarly large scréen display systems could be used to present
complicated documentation "blueprints" to large audiences and
program conversion teams and groups. Self-documentation and
automatic flowcharting systems should also be developed. Indeed,
the approach now taken by MIT regarding the development of video-
disc-based training systems could be used to develop videodisc-

based documentation systems.

14

4.0 MICROCOMPUTER SOFTWARE EVALUATION

Evaluating microcomputer software can be exasperating. 1In
the 1970s--with a good deal of DARPA support, however, a method-
ology was developed to assist decision makers with complicated
evaluation problems. The methodology was subsequently incarnated

as a microcomputer program called "EVAL."

4.1 The Evaluation Methodology

At the core of EVAL lies an evaluation methodology known
as multi-attribute utility theory (MAUT). Developed at the
University fo Southern California by Ward Edwards, MAUT "can
spell out explicitly what the values of (a) decision maker are,
...and show how much they differ" (Edwards, 1977). The values
themselves are determined against a set of evaluative criteria
(or attributes) which are arranged hierarchically in a MAU model.
The construction of a MAU model thus begins with "the overall
top-level criterion for which a comparative evaluation score is
desired. That factor is successively decomposed into its com-
ponent criteria in descending levels of the hierarchy such that
each successive lower-level criterion is more specific than those
at the preceding level..." (Allardyce, et al., 1979). The cri-
teria are then weighted in terms of their importance and then

the decision maker scores the objects under evaluation against

all of the criteria.

15

4.2 EVAL

EVAL is a generic APL program which currently resides on
an IBM 5110. Through EVAL, a decision-maker can create, store,
retrieve, and refine MAU models interactively. A Typical MAU

model appears below.

The use of EVAL is fixed according to the following ele-

ments (see Allardyce, et al., 1979):

® The Evaluation Problem:
- A label identifying the problem;
e Criteria:

- A set of evaluative criteria decomposed
into component criteria;

® Alternatives:

- A list of (labeled) alternatives which
the decision maker must evaluate;

e Utility Scores:

- A list of scores (expressed as a number
between 0 and 1) representing the relative
utility of each alternative evaluated
with respect to each (bottom-level)
criterion;

® Relative Importance Weights:

- Weights which describe the relative
importance of lower-level criteria.
All criteria (expect for the overall
/ top-level / criterion) are assigned
Importance weights;

16

® Data Identification Numbers (DINs):

- These are assigned to each criterion
and describe how the criteria are
related. This numerical labeling
process is shown in the following
figure. (For example, the sub-criteria
of criterion 1 have data identification
numbers 1.1 and 1.2.)

The above input specifications can then be processed to

yield the following results:

® Overall Results:

- The overall value or "worth" associated
with each alternative obtained by
weighting and adding the value scores
assigned to the bottom-level criteria,
aggregating from the bottom to the top:

® Normalized Weights:

- A set of vectors corresponding to the
relative criteria importance weights;

® Intermediate Results:

- Values assigned to any of the inter-
mediate criteria as they contribute
to the overall results;

® Cumulative Weights:

- Weilghts corresponding to the relative
criteria importance weights calculated
as follows: "top-level criteria com-
prising the overall evaluation have
cumulative weights equal to their
normalized weights. At the next lower
level, the criteria are assigned a
cumulative weight computed by multiplying
the normalized weight by the cumulative
weight of the factor to which it is
attached, and dividing the product by
100. This process is continued down

17

V. 7 . catiiiatiion,

T3AOW LNIWSSISSY ALITILN ILNBIHLLYILINA V 40 LVNHOS JHL

Tt
NOIH3LYED

e
NOIHILIYD

et
NOIHILIY)

18

(W4 s
NOIHILIHD

e
NOIH3118D

e
WJULEIU)
— y v

e bt iz .
NOI¥3LIY) NOIYILIYD NOIHILIYD .

_ |

£ 4 4
NOIH3LIY) NOIB3ILIYD NOIHILIHID sf

L _ |]

ﬂ

NOIH3LIHI NOILYATVAI
1IVH3A0

e |

through the structure until all criteria
have been assigned cumulative weights.
The cumulative weight (CUMWT)} indicates
the relative importance of the criterion
to the overall evaluation" (Allardyce,
et al., 1979);

3 C s ,
f . e Sensitivity Analysis:

- The user identifies a single criterion

» of interest and assigns the maximum

] and minimum cumulative weights that

] it may assume. EVAL then varies the

; cumulative weight of the criterion in
S incr=ments of one-tenth of the difference
d between the maximum and minimum weights,
1 while the other weights in the model

. maintain their previously assigned
proportional relationships with one
another. Generally, the alternative
that receives the highest overall
utility will chang~ as the criterion
weight is incremented from W_. to Wpay .
The changes are referred to 24"t hreshold
points, as shown below. (Note that the
alternative having the highest value

is designated with an asterisk.)

1.2 PERFORMANCE CURRENT CUMWT: 55.00

WEIGHT A B C D E

63 54 50 68 74*

63 56 52 66 73*

64 59 54 64 72%

64 62 56 62 71%

65 64 58 60 70*

65 67 60 58 69*

. 66 70%* 62 56 68 1
70.0 66 72% 63 54 67
80.0 67 75% 65 52 66
90.0 67 78%* 67 49 65

100.0 68 glx* 69 47 64

-

10.
20.
30.
40.

OO OO OoOO

SENSITIVITY ANALYSIS : »

19

4.3 A Microcomputer Software Evaluation System

Boehm, et al. (1977) have developed a software character-
istics tree which has been converted by CSM into a multi-attri-
bute utility model for the evaluation of software guality. Like
all EVAL models it is changeable; nevertheless, we think it is
probably very useful as is. Also like all EVAL models the

criteria have beern defined (according to Boehm, et al., 1977): }

® Accessibility: Extent to which code
facilitates use of its parts;

® Accountability: Extent to which code
can be measured;

® Accuracy: Extent to which the output
produced by code are sufficiently precise
to satisfy their intended use;

® Augmentability: Extent to which code
can be expanded in computations functions,
or data storage requirements;

e Availability: Degree to which a system
of resource is ready to process data.
Availability. MTBF/(MTBF + MTTR);

e Communicativeness: Extent to which code
facilitates the specifications of inputs
and provides outputs whose form and con-
tent are easy to assimilate;

e Completeness: Extent to which all parts
of code are present and developed;

® Conciseness: Extent to which excessive
information is not present;

e Consistency: Extent to which code con-
tains uniform notation, terminology, and
symbology within itself, and external
consistency to the extent that the con-
tent is traceable to the requirements;

20

® Device independence: Extent to which
code can be executed on computer hard-
ware configurations other than its
current one;

® Efficiency: Extent to which code fulfills
its purpose without wasting resources;

® Human engineering: Extent to which code
fulfills its purpose without wasting
users' time and energy or degrading their
morale;

e Legibility: Extent to which function is
easily discerned by reading codes;

® Maintainability: Extent to which code
facilitates updating;

® Modifiability: Extent to which code
facilitates the incorporation of changes;

® Portability: Extent to which code can
be operated easily and well on computer
configurations other than its current one;

e Reliability: Probability that an item
(device or program, system) will function
without failure over a specified time
period or amount of usage;

® Robustness: Extent to which code can
continue to perform despite a violation
of the assumptions in its specifications;

® Self-containedness: Extent to which code
performs its explicit and implicit functions
within itself;

@ Self-descriptiveness: Extent to which
reader of code can determine its objectives,
assumptions, constraints, inputs, outputs,
components, and revision status;

® Testability: Extent to which code facili-
tates establishment of verification cri-
teria and supports evaluation of its
performance;

® Understandability: Extent to which purpose
of code is understandable to reader; and

® Usability: Extent to ...ich code is reliable,
efficient, and human-engineered.

21

L ¥ ol

Bt c i, Dy

As presented previously (Wittmeyer, 1980), the Boehm, et al.

(1977) software characteristics tree is as follows:

Portability —e Device-independence

\

Self-containedness

Accuracy

o Reliability Completeness

As-is

utilit
’ Robustness Integnty

Consistency

/

Efficiency Accountabihits

General
utihty

Device efficiency

Human engineenng Accessibility

Communicativeness

Testability Self-descnptiveness

Structuredness
Maintainability

\ ™ Understandability Conciseness

Legibility

Modifiability Augmentability

When this tree is arranged hierarchically in a multi-attribute

utility model, it appears as follows:

22

L. - * v @ - -~ -
o, V. ittt N PN [e e e J

—_—— e~

e ey _

JgvLId0d

319vI73

AD
N3IJ214d
3I01A3

AJN3ID

-1443

d33NI
NI NVWN

£

-430N

~VANV1S

THVLINIW
-onv

23

4
i

.

ry

5.0 CONCLUSION

This report suggests the following:

e A set of programming standards including
especially structured programming tech-
niques, should be developed and applied
to DARPA/DSO/CTD projects;

® A ccmputer~based production rule system
should be developed which would enable
programmers to input programming require-
ments and receive guidance and recommen-
dations regarding how to program, which
language to use, and the like;

e Software documentation should be animated
via several media including computer-
based fiche and videodisc systems;

® Automatic flowcharting and self-descriptive
software systems should be developed and
tested for their documentation effective-
ness in technology transfer contexts; and

® Multi-attribute utility-based models of
software quality should be developed and
exercised in order to assess existing
and improve on-going software projects.

24

6.0 REFERENCES

Allardyce, L.B.; Amey, D.M.; Feuerwerger, P.H.; and Gulick,
R.M. Documentation of Decision Aiding Software: EVAL
Functional Description. McLean, Virglnia: Decilsions and
Designs, Inc., November 1979,

Anderson, R.H. and Gillogy, J.J. Rand Intelligent Terminal
Agent (RITA): Design Philosophy. Santa Monica, California:
The Rand Corporation, February 1976.

. Rand 1ntelligent Terminal Agent (RITA): Reference
Manual. Santa Monica, California: The Rand Corporation,
December 1976.

Edwards, W. "How to Use Multiattribute Utility Measurement for
Social Decisionmaking." IEEE Transactions on Systems, Man,
and Cybernetics, Volume SMC-7, Number 5, May 1977, pp. 326~
340.

Barden, W., Jr. Microcomputers for Business Applications.
Indianapolis, Indiana: Howard W, Sams and Co., 1979.

Freeman, P. and Wasserman, A.I., eds. Tutorial on Software
Design Techniques. IEEE Computer Society, 1980.

Frenzel, L.E., Jr. "Understanding Personal Computer Software."
On Computing, Winter, 1979.

Higgins, D.A. Program Design and Construction. Englewood Cliffs,
New Jersev: Prentice Hall, 1979,

Howard, J. "What is Good Documentation?"” Byte, March 1981.

Lewis, ™ . Software Engineering for Micros. Rochelle Park,
New Jersey: Hayden Book Company, Inc., 1979,

Ross, D.T.; Goodenocugh, J.B.; Irvine, C.A. "Software Engineering."”
Computer. IEEE, May 1975.

Shneiderman, Ben. Software Psychology. Cambridge, Massachusetts:
Winthrop, 1980.

Waite, M. and Pardee, M. Microcomputer Primer. Indianapolis,
Indiana: Howard W. Sams & Co., 1980.

Williams, G. "Structured Programming and Structured Flowcharts."
Byte, March 1981.

25

. "Applied Structured Programming." Program Design.
Blaise Liffeck, ed. Peterborough, New Hampshire: Byte
Books, 1978.

Wittmeyer, J.F. Defense Microcomputing in the 1980s. Computer
Systems Management Technical Report, December 1980.

Yourdon, E.N., ed. Classics in Software Engineering. New York,
New York: Yourdon Press, [979.

26

e s —— e

APPENDIX A
"Structured Programming and Structured Flowcharts"
by

Gregg Williams

27

" cw @ - - -~

P - -
. - ‘ gh - Fon b ::‘_ pren - i,

M L

a1

Structured Programming
and Structured Flowcharts

Structured programming—that
phrase, unfamiliar to me and, 1
assume, to most people several years
ago—is now endowed with such
magical powers that most books on
programming include it somewhere in
their titles.

But what is structured program-
ming? Most of us feel that it is prob-
ably good for us, like getting regular
exercise or brushing our teeth after
each meal. You may also think it's
too complicated (not true), that it
slows down programming (wrong, it
usually speeds it up), or that it cannot
be done unless your computer runs a
language like Pascal or ALGOL
(wrong again).

Simply put, structured program-
ming is a set of techniques that makes
programs easier to write, easier to
understand, easier to fix, and easier
to change. These techniques are sim-
ple and general and can be adapted to
any computer language that has a
goto statement—that includes
BASIC, assembly language, FOR-
TRAN, and COBOL. The purpose of
this article is to show you a new form
of notation that will help you write
structured programs. But first, let’s
review structured programming.

The Elements of Structured Pro-
gramming

A structured program is like a set
of notes written in outline form. The
headings accompanied by Roman nu-
merals—], 11, IlI, and so on—provide
the overall organization. Each Roman
numeral topic is broken into several
component topics (A, B, and C, for
example) and each of these is sub-
divided further (1, 2, 3, ...) and fur-
ther (a, b, c, ...) as needed. Table 1

March 1981 € BYTE Pubbications Inc

Gregg Williams, Editor
BYTLE
POB 372
Hancock NH 03449

shows a problem and its solution
written in this outline form.

The above example demonstrates a
process known as decomposition:
breaking a task (problem) into its
subtasks. This process represents the
most important concept in structured
programming, ie: that a problem can
be solved by repeatedly breaking it
into subproblems, until every sub-
problem can be solved. If you plan
this decomposition before you try to
write it out in the narrow, precise,
and time-consuming syntax of the
target language (ie: the programming
language you use to solve the prob-
lem), you will have a better chance of
getting your program right the first
time.

It has been
mathematically proven
that any program can
be written using three

basic constructs.
]

But how do you decide which way
to break the problem into sub-
problems? Common sense helps. Ask
yourself, “What sequence of actions
and decisions would I have to make if
I were doing this without a
computer?”

The rest of the answer comes from
the literature of structured program-
ming. It has been mathematically
proven that any program can be writ-
ten using three basic patterns, called
programming constructs (or simply
constructs): sequence, if...then...else,
and while...do. The first construct,
sequence, gives you the basic capa-

28

bility of breaking a task into a set of
subtasks that accomplish the main
task when executed sequentially.

The second construct, if...then...
else, performs one of two subtasks,
depending on the truth or falsity of a
stated condition. An everyday exam-
ple of this construct is given in the
following sentence: “If it is raining
outside, | will take my umbrella with
me; if it is not, | will leave the um-
brella at home."”

The third and least familiar con-
struct, while...do, is actually a
generalized do-loop that repeats a set
of actions (called the body of the
loop) while a stated condition is true.
You use this construct when making
iced tea from a mix: “As long as
(while) the mix is not completely
dissolved, I will continue to stir it.”

If you combine lines of code in the
three ways described above, the re-
sulting program is said to be struc-
tured. In most languages (BASIC, for
example) you will still use goto
statements, but they will be restricted
to carrying your program to specific
points, ie: the beginnings and ends of
tasks or subtasks. Each module (sub-
task) in a structured program has a
property known as “one-in, one-out”;
that is, there is only one entrance and
one exit from these modules, and no
module will ever jump into the mid-
dle of another one. Instead of being
like a plate of spaghetti, a program is
more like a string of pearls (with each
pear] containing another, smaller
string of pearls, and so on); each
module has a definite and unchanging
position on the string. When such
regularity can be counted on, existing
modules can be changed or deleted,
and entirely new modules can be add-

- Best
Available
C opy

> of program deszxn-—tluﬂ is,
transforming a situation 20
- solved into a set of programs
¢ will accomplu‘hL ﬂnh‘tadc 1 was’
more wrong A
§ Through my q':nmcc with &
g particular programming project,. i
suddenly recognized a major point
that 1 had formerly mot compre-- -
v hended: that structured program-

5 ming does not encompass the en- -

hre process of progmmmmg The .

- S

ed without problems caused by unex-
pected module interaction,

That is the theory of structured
programming —now for putting it in-
to practice. Figures 1 thru 3 show the
three constructs (sequence, if...
then.. .else, and while...do) in stan-
dard flowchart form and as BASIC
code. (For a more detailed look at
writing structured programs in
BASIC, see “Applied Structured Pro-
gramming,” listed in the references.
This article appears in an anthology
that contains several other good ar-
ticles on program decomposition—

Problem Given a numeric array V with N
elements, find the larges! element. MAXV,
and its index. MAXINDEX These varables
are related as foliows

o 1 < MAXINDEX < N

® MAXV = V (MAXINDEX)

e MAXV s the fargest vaiue n V(1)
V(2). V(N)

Table 1: A problem and its solution in
outline form The common outline
form used for summarizing a body of
materia! can also be used to give struc-
ture to the emerging design of a pro-
gram. Table 1a gives a statement of the
problem and table 1b gives its solution
in outline form.

m

ﬁon

sometimes called top-down design or
programming by stepwise refine-
ment—and structured programming.)

The Origins of a New Notation
When | got my first job as a com-
mercial programmer, | realized that |
was going to have to write longer
programs than [had previously writ-
ten. This prompted me to adapt struc-
tured programming techniques to my
work in BASIC, COBOL, and RPG
II. (As it turned out, my longest pro-
gram was a 35-page COBOL program
that grew to 75 pages without going

Solution
|. Set problem up-
A. Set MAXVAL = -9 x 10%*
B. Set MAXINDEX = 0O
C. Set INDEX = 1
Il Find largest element
A. Set up a loop that increments the
variable INDEX from the beginning to the
end of the array V.
For each vaiue of INDEX
1. Compare the current array value (V
(INDEX)) to MAXVAL
a f MAXVAL 18 equa' or larger. do
nothin A)?V
b itM AL 1S smalier. repiace MAX-
VAL with the current array value and
MAXINDEX with the current index
(the value of INDEX)
Hl. Print the largest element (MAXVAL) and its
index (MAXINDEX)

. - program can often be greatly im-

March 1991 T BYTE Pubiscations Inc

29

by attention to the design

3 ,:. decisions that gre made in the early

of snalyzing the program

‘. da{gn 1 am including a list of par-
- tieularly

helpful books and articles
&cnfomchdnmdofthcs

R SREY

out of control. I could not have done
this without the rnigorous use of struc-
tured programming techniques.)

As my programs grew larger, | be-
came dissatisfied with the methods |
used to plan my programs. Conven-
tional flowcharts obscured the struc-
ture of my programs. Nassi-Schnei-
derman charts and Warnier-Orr dia-
grams were unsatisfactory for other
reasons.

The best solution offered in struc-
tured programming texts was struc-
tured pseudocode, an informally
written Pascal-like “program” that
uses terse English phrases to describe
the program. Listing 1 shows the
structured pseudocode for the pro-
gram outlined in table 1b. I used
structured pseudocode extensively to
outline programs but found that the
details of the resulting pseudocode
often obscured the overall design of
the program.

In retrospect, [can see that |
wanted a design notation that could
do the following:

o Completely describe the algorithm
to be programmed

eProvide overview and detailed
documentation that was easy to read
e Not need to be redrawn every time

G A e

don’t risk

magnetic damage to
EDP storage media

Many computer users have learned “the hard way* that
accidental exposure to magnetic fields can erase or
alter data and programs stored on disks and tapes
Such irretnevabdle loss can occur during media transit
or storage if unprotected disks or tapes are exposed 1o
the magnetic fields produced by motors, transformers.
generators, electronic equipment, of even intense tran-
sient fields induced by electncal storms.

Data-Safe Products provide reliable. sconomical
protection against Stray magnetic field damage by
shieiding disks and tapes with the same high-permea-
bility alloy used to shield cathode ray tubes and other
magnetic-sensitive components DISK«SAFE Fioppy
Disk Protectors. punched for 3-ring binder, sandwich
two 8° disks. or smaller mini-disks, between sheets of
magnetic shieiding alloy encased in the strong viny!
pockets (Binder sent free with 10 Protectors)

DISK+SAFE

FLOPPY DISK PROTECTORS

TAPE+*SAFE

METAL CASSETTE SHIELDS

TAPE «SAFE Cassette Shields are constructed of mag-
netic alloy. with helarc-welded seams and an easy-
open hinged top Each attractively-finished TAPE «SAFE
hoids one cassette in s onginat plastic box A
shefved metal FILE DECK (not shown) stores up to six
TAPE«SAFEs for easy access (One free with sach six
TAPE-SAFES) VISA and MasterCard telephone orders
accepted Pnces below include shipping

DISK=-SAFE Floppy Disk Protectors 1-5. $8.95 ea.
6-9. $7.95 ea. 10 or more wbinder, $6.98 ea.

TAPE -SAFE Cassette Shieids 1-5, $14.98 sach.
6 or more with free FILE DECK. $12.98 each

TAPE«SAFE FILE DECK $10.98 each

Data-Safe Products, Inc.
1926 Margaret St Phiia PA 19124 ¢ 215/535-3004

Dealerinquiries invited
March 1081 T BYTE Pubbcanons inc

Listing 1: A structured pseudocode solution of the FINDMAX problem given in the text
and in table 1. Structured pseudocode is a terse. informal. Pascal-like program that
helps the user design a program before writing it in a forma! programming language
Program FINDMAX:
Inithalize system variables (MAXV = -9 x 10%°, MAXINDEX = O, INDEX = I}
While INDEX <= N
find value of current array element { CURRV = V (INDEX®):
if current array element (CURRV) > maximum element so far (MAXV)
new maximum element = current element
new maximum index = current index { MAXINDEX = INDEX)
endif
increment INDEX by |
endwhile
print MAXV, MAXINDEX
(end of program)

Listing 2: A BASIC implementation of the INDMAX problem from table 1. In this pro-
gram, the variable MAXINDEX has been shortened to MINDEX to distinguish it from
the variable MAXV. This program is written in TRS-80 Mode! I Leve! 1! BASIC. and it
will run on other computers that use Microsoft BASIC

100 s

110 REM FROGKAM F INDMA X

120 s

170 REM THIS FROGRAM TAIES AN ARRAY OF NUMEERS, V., AND

140 REM FINDS THE LARGEST ELEMENT, MAYV., AND 1TS INDEX,

150 REM MAXINDEX, SUCH THAT:

160 REM MAYVY =V (MAXINDEY)
170 3
180 REM (FOR THE FURFOSES OF TLLUSTRATION, WE WIiL ASSUME

190 REM THAT THE DATA 1S ALREADY IN THE AaRkAY Vo

TR Y

:‘lD H

20 REM ==z=zzzx=s===z==== MAIN FROGRAM =====z=z=zz====s==z==cczz==z=
U]

"4U DIm vl

~

250 GOSUE 80uw: REM --NOT FART OF ALGORITHM IN FIGURE 63 THIS
260 REM SUBROUTINE ENTERS DATA INTO ARRAY \
o7 s
28 REM —~—mmem——— EOX 1: INITIALIZATION RQUTINE --e---mmmmmm-
290
To0 MAXY = -9 3 1a(20
T10 MINDEX =
D INDEX = 1

REM —vm—vm—o e BOX 2: FIND LARGEST VALUE ——==—w-m-mm—emem -
60 REM -- (EEGINNING OF WHILE...DO LOOF)
370 IF INDEX N THEN S20
zgo CURRV = V (INDEX)
90 ¢
K00 IF CURRV MAXY THEN 440
410 MAXY = CURRV: REM -- (THIS FART EXECUTED 1F FALSE)
420 MINDEX = INDEYX
/470 ¢
440 INDEX = INDEX + 1
851 ¢
460 REM -- (JUMF TO EBEEGINNING OF WHILE...DO LOOF)
470 GOTO T70
ago ¢
490 3
500 REM ——c-eeemee BOX T3 FRINT FINAL VALUES ~--vr-v—-—emem oo
S0 1
520 FRINT: FRINT "THE LARGEST VALUE IN THE V ARRAN IG5
ST0 PRINT Y("g MINDEX s ") = ": MAXV
5401 FPRINT
S50 s
H60 END
®70 REM =z=zE=====z===x= END 0OF MAIN FPROGRAM ==cs====zzcxssc-c=z====
760 2
TT e
780 REM —=—wme—me—e SUBRROUTINE TO FILL ¥V ARRAY —-—wem e e oo o
P A AN
8uo DATA 17t REM ~- (NUMEER OF ITEMS TO RE KREAD IN

g1 DATA 1, 1%, -8B, T.24, -17.92, O, &, 1, O, 1.4, -20%, 17
BZC FEAD N

B8T0 FOR I=1 TO N: READ V(1 : NEXT 1

840 RETURN

30

We do

what they
do but...

when you have
ESeP

you have the best!

The best Data ‘GM"@

Base Systems for

dataKEY*

« index sequential and relative record files
¢ Fast extended search/data analysis
(a) Fast access 10 speciic information
(b) Basic statistics reported from search
« Extensive report capabilities
« Flexible sort function

Price
Diskette version
(specity type & size)$99.50
Corvus 10 Mb version . On request

The best Business
Data System for

bookKEYper*
¢ Fully integrated with catakey

¢ Accounts Payable. Receivabies
* General Ledge
* Transaction gniven—no file size hmit

Price
Diskette version
(specify type & size) .. $450.00
Corvus 10 Mb version On request
The best Personal P
Finance System for ‘ﬂm

Personal budgetKEYper*
o Fully integrated with datakEY

* Checkbook manager
* “Payables” manager
* Expenses statements
Price

“Diskette version
(specify type & size)

" Our software runs with Appie it DOS 3.3, or Applesot
or Language System and 1s compatibie with Corvus
10 Mb. 8° Sorrento Valie and 5' ° disketie. meny-
adriven. and tutons!

TEL. (803)485-7284

ESPCO(TPUTER

RESOURCES NC.
The “fuli-service” computer company
9 Ash Street ¢ Hollis, NH 03049

March 1981 € BYTE Pubicatiore inc

a change was made in the flowchart
e Use 2 minimum of unfamiliar nota-
tion

oBe visually pleasing

This structured flowchart notation,
which | developed over a period of
several years, meets these criteria.

Basic Constructs in Structured
Flowcharting

According to the tenets of struc-
(a)

SUBTASK 1

SUBTASK 2

SUBTASK 3

l

tured programming, any program
can be expressed as a combination of
four basic building blocks. These are
sequence, if...then...else, while...do,
and decomposition. (The first three
constructs, described in ~~~ventional
flowcharts in figures 1a thru 3a, are
given in structured flowcharts in
figures 4a, 4b, and 4c, respectively.)

The sequence construct (figure 4a)
is identical for both conventional and
structured flowcharts; however, a
later construct, decomposition, will
distinguish the structured flowchart
sequence construct from its conven-
tional counterpart.

(b)

100 (BASIC statement for subtask 1)
110 (BASIC statement for subtask 2)
120 (BASIC staternen! for subtask 3)

Figure 1: Sequence as a control structure. Figure 1a shows how a linear sequence of sub-
tasks is drawn using conventional flowchart notation. Figure 1b shows the equivalent

sequence as a series of BASIC lines.

(a)
T
{CONDITION)
Hd
SUBTASK DONE IF SUBTASK DONE IF
CONDITION IS FALSE CONDITION 1S TRUE
A
(e} CONVENTIONAL
(b) 100 IF (condition) THEN 200

120 (BASIC statements for subtask
done f condition is lalse)

190 GOTO 300

299
300

(BASIC statements for subtask done if
condition is true)

(last statement of “true” subtask)
(first statement of next construct)

Figure 2: The if...then...else construct as a control structure. Figure 2a shows the con-
ventional notation for this construct, while figure 2b shows the BASIC equivalent.

31

S ———— ——
SUBTASK 1
(0) CONVENTIONAL
SUBTASK 3
(a)
800Y OF LOOP
WHILE
— IF SUBTASK DONE If (CONDITION
{CONDITION) CONDITION 1S TRUE
\ H
BODY OF LOOP
b Il
‘ SUBTASK DONE IF
10C IF (opposite of condition® THEN 30 # CONDITION IS FALSE
110 (BASIC statemernts fcr body of loep,
done :f condition s true
(b) (c)
29¢ GOTC 10 * Figure 4: The basic structured flowchart notations Figure 4a shows the structured flou:-
30C (first statemern: of nex' constract ' chart notation for a sequence of tasks it is equivalent to the flowchart of figure la

| Figure 4b shows the structured flowchart notation for the if.. then. else comstruct
| fequivalent to figure 2a): note that it is the placement of the letters T and F (for true and
false) that determines the conditions under which a given subtask is performed Figure
4c shows the structured flowchart notation for the while . .do construct tequivalent to
figure 3aJ. the diagonal line leading down indicates that the condition (in the hexagon s
performed before the body of the loop

Figure 3: The while...do loop as a control
structure. Figure 3a shows the while ..do
loop in conventional flowchart notation
Figure 3b shows the equivalent loop in
BASIC code

The 1f...then...else construct is fair- construct is not needed, the box use a decision diamond and an exter-

ly straightforward in the conven-
tional flowchart (figure 2a). In the
structured flowchart version (figure
4b), the boxes to be performed are to
the right of the decision diamond,
with the understanding that only one
of the two boxes will be performed
based on the value of the condition in
the diamond. If the “else” side of the

labeled F is eliminated. In this case, if
the condition does not evaluate to
true, no action is performed, and con-
trol continues with the next construct
following the decision diamond.

The notation for the while...do
construct is not as easily derived. The
conventional flowchart cannot direct-
ly express this kind of loop: it must

nal loop (figure 3a). The structured
flowchart version (figure 4c) intro-
duces a new symbol, a hexagon. (Ac-
tuallv, the hexagon is used to denote
one of several kinds of loop struc-
tures: the word while makes this a
while...do loop.) The box connected
below and to the right of the hexagon
is performed as long as the condition

* % NORTH STAR USERS * *
8" FLOPPY SUBSYSTEM HAS DAWNED ON THE HORIZON
CUMPLETE WITH MANL'ALS. SOFTWARE, HARDWARE FULLY INTEGRATED, READY O RLN

s e R NG S hardiate P AT owe e ot B and or 3 drives *Detaried 80 pape manual inciuded * Background prens rashs
U epry Dles e 32 NME Y wemple oy n nperation *Raliv (1 M® companble ® File securnin *tarerpine utihities incladedd

* *

NI

DMA-DOS Sottware S200 Dual Shugart 8° 800R drives in cabinet with fan

Phnamic Mucroprocesser Basnoiares e Operating Suatpm and power supply $1.250
Tarbell Double Density Controller $420 Total package $1.910
Cables $40 e and dtees subier v chang e wathioee aotgy

PN N ELY AN Y SN ML)

MEWHEPAY SHIPPING ON PREPAIY ORDERS Continental USA onlv - WE HAVE NO READER INQUIRY NUMBER PLEASE WRITE OR CAl!

JOHN D. OWENS ASSOCIATES, INC.

12 SCHUBERT STREET, STATEN ISLAND, NEW YORK 10305

SNIMO U NHUC N SILVIDUSSY 5% 155 U NBOL

OVERSEAS CALLERS: TWX 710 588 2844 or call (212) 448 6298 * DOMESTIC CALLS: (212) 448 6283 (212) 448 6298 (212) 448 291}

March 1981 T B TE Publications Inc

32

-- -

senichucctaths..

! listed in the hexagon is true. The con-
dition is performed first (denoted by

TASK X the position of the hexagon being
l spatially above the box being per-

l SUBTASK 1 formed); this allows the possibility of
the body of the loop being performed

zero times if the condition is initially
false.

The fourth and pivotal construct of
this programming notation, decom-
position, can best be stated as a rule:
any box representing a task can be
broken into multiple boxes that repre-
sent the necessary subtasks. The sub-
tasks may be rectangular boxes that
represent simple tasks, or they may
be any other valid structured flow-
chart construct (if...then...else,
WHILE while...do, etc). They are written top
8>y to bottom in the order of perfor-
mance, with the line denoting pro-
gram flow entering each subtask box
from its top and exiting from the bot-
tom.

Figure 5 illustrates the above con-
struct. Task X is composed of five

Figure 5: Example of the subdivision of a task. A centra! rule of structured flowcharts s subtasks performed in humeric se-
that any box can be broken into multiple boxes that represent the necessary subtasks. ~quénce. Tasks 1, 2, a.nd 5 are simple
Here. task X is broken into five subtasks executed in top-to-bottom order. Subtasks 1. subtasks. Subtask 3 is an if...then. .
2. and 5 are simple subtasks. Subtask 3 is an if .. .then._.else construct Subtask 4 is a else construct that allows either sub-
while...do loop task 3a or subtask 3b to be per-

z e N 'T BUSINESS SOFTWARE
| | FOR IHG 2-89!
S & M Systems, Inc., the "All-In-One" Software Company

is offering a full line of Business Packages for the
"All-In-One" 2-89 Microcomputer

inseq-801m) Business Software Systems
Industry Standard Osborne Based: Accounts Payable/Receivable,
General Ledger, Payroll
S & M Software: Retail Inventory Control, Invoicing.
Manufacturers Inventory Control, Customer Mail List

PLUS MANY MORE!!

All Systems have been Field Tested and are ready for shipment!
CALL ABOUT OUR NATIONAL DEALER PROGRAM AND JOIN THE BEST
IN SELLING THE FINEST SOFTWARE ON THE 2-80 MARKET!
SYSTEMS ALSO OPERATE ON TRS-80 MOD I, MOD i, MOD Il
AND ALTOS MICROCOMPUTERS

SUBTASK 2

SUBTASK 30

SUBTASK 3b

SUBTASX 4

SUBTASK S

For further Information, Contact: S & M Systems, Inc. Or Dial Direct: 1-617-373.1500
P O Box 1295 1-:617-481-503)

Hoverhill, Massodhusetts 01830

March 1081 T BYTE Publications Inc 33

CpreT— L . i ren b

formed. Subtask 4 is performed as
long as the condition within the hexa-
gon (B>Y) is true. Of course, any
subtask box may be further divided
into its component subtasks.

Since any box can be broken into
componert subtasks, you can now
see how this notation is used to design
a program. The boxes in the leftmost
column give the overall design of the
program; boxes are then expanded to
the right as each box (task) is divided
into boxes representing the appropri-
ate combination of subtasks. As a
result, you can scan any one of
several of the leftmost column of
boxes for an overview of varying
depths of the program design, or you
can study the implementation of any
major or minor subtask by concen-
trating on only the boxes and control
structures growing to the right of the
given subtask.

An Example
The following example will il-

FINOMAX

[

lustrate the process of developing a
program using structured flowcharts.
Using the example of table 1a, sup-
pose you are given an array of N
numbers, V(1), V(2),...V(N), and
have to find the index value MAX-
INDEX such that the largest value in
the V array is MAXV=V(MAX-
INDEX). The entire structured flow-
chart for this problem is given in
figure 6.

Cover the right three-fourths of the
flowchart so that only the subtasks
numbered 1, 2, and 3 are visible. This
is what the “first pass” of the flow-
charting effort should look like. Sub-
task 1 is the initialization of the prob-
lem. Subtask 2 is the determination of
MAXINDEX and MAXV. Subtask 3
is the printing of these two values.
Since the task in subtask 3 is simple
enough to be directly accomplished in
the target language (for example,
BASIC), it need not be subdivided.

Subtasks 1 and 2 are developed
concurrently. Subtask 2 is basically a
loop that examines V(1), V(2),...V(N)
in turn, keeping the appropriate
values for MAXV and MAXINDEX
for the | elements encountered thus

[INITIALIZATION 1[

11

|

warys-9 10%° J

12

l

MAXINOEX =0 I

l

INDEX ¢)

2

FIND LARGEST VALUE MaXY

AND ITS INDEX MAXINOEX

PRINT MAXV, MAXINDEX

WHILE
INDEX S N

1

far. The values of MAXV, MAX-
INDEX, and INDEX must be set (as is
done in subtasks 1.1, 1.2, and 1.3).
Note that this loop could have been
done more easily using a do-loop:
other optimizations could also have
been made, but this example is given
for the purposes of illustration only.

The main work for each element is
done as subtask 2.1.2: if the current V
element being examined (ie:CURRYV)
is greater than the maximum V ele-
ment so far, MAXV and MAXINDEX
are set to the current array and index
values, respectively. These subtasks,
numbered 2.1.2.1 and 2.1.2.2, are
performed only when the relationship
given in the diamond of 2.1.2 is true.

Once the structured flowchart has
reached the level of detail shown in
figure 6, most of the design considera-
tions have been conceived and per-
fected; it is then a simple task to
translate the program into BASIC
(see listing 2) or any other general-
purpose computer language. The
benefits are more pronounced when
used with a larger program. If a struc-
tured flowchart is subdivided to the
right until each box represents a task
that can be directly coded in the tar-
get language, you will catch most of
the “oops, 1 torgot to...” insertions
and changes that programmers
generally think of after they have
started coding the program.

Other Control Structures
Although the three constructs
discussed so far are sufficient for
writing any program, it is not always
convenient to use only these con-
structs. Other control structures can
be devised for the convenience of the
programmer. For example, boxes 1.3,

CURRY » ¥V (INDEX)

212

2113

-+

2121]

MAK, e S RO, |

2122

INDEXs INDEX +)

MAXINDEX » INDEX

Figure 6: Structured flowchart for program FINDMAX. Given an array V with N elements, the problem is to find the largest element,
MAX V. and its index within the V array. MAXINDEX. The numbers above each box give the sequence and leve! of that box in rela-
tion to the entire problem. For example, box 1 can be broken into three subtask boxes: 1.1, 1.2. and 1.3.

March 1081 2 BYTE Publications Inc

34

2.1, and 2.1.3 in figure 6 can be re-
placed by a control structure that is
available in most programming lan-
guages—a do-loop that varies INDEX
from 1 to N. An example of the nota-
tion | have devised for this is given in
figure 7a; the body of the loop is per-
formed according to the parameters
given in the hexagon.

Another well-known control struc-
ture is the repeat...until loop, shown
in figure 7b. The position of the body

FOR | =
17010

of the loop, above and to the right of
its associated on, is meant to
signify that the y of the loop is
performed before the condition is
tested. Although the meaning of this
notation does not implicitly follow
from its form, it was chosen for its
simplicity and consistency with the
notation already developed.

Other constructs come to mind: a
case structure, an unconditional goto,
and two controlled gotos—the restart

800Y OF LOOP

]

BODY OF DO-LOOP

UNTIL
(CONDITION)

(o)

o)

Figure 7: Structured flowchart notation for a do-loop and a repeat...until loop. In the
do-loop. figure 7a. the hexagon contains all pertinent information defining the loop,
and in the form most comfortable to the user. In the repeat...until loop. figure 7b. the
notation is interpreted as showing the body of the loop being executed before the cond:-
tion is tested. In both cases, the box representing the body of the loop can be expanded

to the right, into its component subtasks

If You Own a 56K CP/M Machine,
Then You Should Have Leverage

Leverage is an innovative new informa-
tion management system recently intro-
duced by Urban Software Corporation. It
combines a number of powerful tools,
including full screen data entry, report
generation, word processing, and subset
extraction, into an integrated, easy-to-use
package. The Leverage system provides
many capabilities previously available only
through costly custom programming, yet it
is designed for use by non-programmers.

Leverage Highlights
¢ Data bases are easily configured to
your particular applications; prototypes for
mailing lists, personnel files, appointment
calendars and inventory systems are prc-

vided.

¢ Flexible report generator lets you
define report formats such as alphabetized
lists, tables, directories and schedules.

® A “Help Key" allows instant, in-con-
text access t0 an on-line manual over
80,000 characters long.

* Graphic menu selection provides opti-
mal responsiveness and ease of use.

® Written in “*C,”" a powerful systems pro-
gramming language developed by Bell Labs
in conjunction with its UNIX operating
system (most of UNIX is written in *“C"").

¢ Sophisticated programming techniques
like hash table coding, dynamic overlays,
shell sort and heap sort guarantee maxi-
mum efficiency.

Leverage Program $185

Manual alone. $ 15 (Applicable to subsequent purchase of program)
Educational rates available. UNIX is s trademark of Bell Labs, CP/M of Digital Research

If your local dealer does not yet have Leverage, use the reader service card or call

Urban Software for a brochure.

Urban Software Corporation
19 West 34th Street ® New York, NY 10001 o (212) 947-3811

March 1981 € BYTE Publications Inc

(restart the innermost containing
Joop) and the exit (go to the first task
after the innermost containing loop).
Although 1 have used some of these
constructs for quite some time, they
are not presented here because | am
not yet satisfied with the notations 1
have developed for them. In any case,
structured flowcharts are meant to be
a personal notation—you should add
to and modify these constructs to fit
your needs.

Conclusions

I have found structured flowcharts
helpful in designing programs. The
notation is obviously intended for
weakly structured languages (like
BASIC), as its utility decreases when
the structure of the target language
increases.

The notation is, at the moment, in-
formal, and it should stay that way.
It should be extended and modified in
whatever way seems useful to you. In
particular, you should use additional
notation for special features of the
target language (eg: global and local
variables, use of a stack of inter-
mediate computation) when appli-
cable. If the structured flowchart is to
be read by another person, however,
you should define all the structures
used in terms of their equivalent
unstructured (conventional) flow-
charts.

If the final structured flowchart is
to be redrawn, you should do so with
clarity in mind. Place only those
boxes that help explain the overall
design with the main flowchart; leave
the implementation details to subor-
dinate flowcharts.

I hope you will find this notation
useful. | would appreciate your sug-
gestions, criticism, and comments.®

References
1. Page-Jones, Meillir. The Practical Guide to
Structured Systems Design. New York: Your-
don Press, 1980
2. Ross, D T. J B Goodenough, C A Irvine
‘Software Engineering: Process, Principles.
and Goals.'' Computer. Institute of Electrical
and Electronics Engineers (IEEE), May 1975
Also Tutorial on Software Design Techniques.
Third Edition, P Freeman and A | Wasserman,
editors Long Beach CA: IEEE Computer
Society, 1980
3. Williams, G. '‘Applied Structured Program-
ming "’ Program Design, Blaise Liffick, editor
Peterborough NH: BYTE Books, 1978
4. Classics in Software Engineering, E N
Yourdon, editor. New York: Yourdon Press,
1979

APPENDIX B

"What is Good Documentation?"
by

Jim Howard

36

What Is Good Documentation?

As more and more people discover
the joys of owning a microprocessor
the need for good documentation will
continue to grow. Information will be
needed at all levels, from detailed
hardware and software documenta-
tion to descriptions of which buttons
to push to play your favorite game.

Who will provide this information?
The simple answer is that those who
know will tell those who don't know.
It sounds simple, but it's not. Every-
where, complaints are made about
documentation —“inadequate,” “er-
roneous,” “over my head,” "bad or
nonexistent,” and so on. All too of-
ten, companies market excellent sys-
tems with poor or sketchy documen-
tation, resulting in unhappy cus-
tomers and unsatisfactory sales.

It's a common mistake to believe
that because somebody is an expert in
a subject, he can explain it to others.
For example, it's assumed that a pro-
fessor who knows a subject inside and
out can pass on this information to
students. However, whether he can
or cannot depends on something else
besides his knowledge of the subject.
It depends on his ability to put
himself in the place of the users, the
students, to begin where they are,

Jim Howard
150 Ramona Place
Camarillo CA 93010

using their language and their know-
ledge level. (Of course, if there is a
failure to communicate, it is the stu-
dents who fail, not the professor!)
The microprocessor industry is a
classic example of the communication
problem. Aside from a few shining
lights, microprocessor literature suf-
fers from a bad case of “the jargons.”
The problem was not as serious while
the technology was being pursued by
only a few hobbyists, who like to
work things out for themselves. Now

Aside from a few
shining lights,
microprocessor

literature suffers from

a bad case of ‘‘the

Jargons.”
]

that the public is becoming involved
in large numbers, the information
must adapt to the customer, not the
other way around.

Many could undoubtedly do a
better job of communicating if they
followed a few principles. But doing

this requires conscious dedication.
And, of course, it requires principles.
Those principles are what this article
is about.

To translate the jargon of the ex-
pert into terms meaningful to the rest
of the world, we need an interpreter.
Such an interpreter is similar to the
compiler or interpreter used in com-
puters, which translates the source
language into one the machine under-
stands. In both cases, the source
language is provided by the computer
expert. The machine is the user in one
case, the public in the other.

Information Design

The interpreter we require can best
be referred to as information design.
This term is better than the common
term “technical writing,” in that it in-
dicates what really is re-
quired—conscious, step-by-step de-
sign. Writing is just one aspect of pre-
senting understandable information.
In fact, technical writing is similar to
writing code for a computer program.
If the planning and structure are
sound, the writing almost takes care
of itself.

There are many aspects of informa-
tion design, not all of which can be

eoContent defines the breadth and
depth of the material in a docu-
- ment, and is best specified by a
1 topic diagram. Consistency and
uniformity of treatment are re-
. vealed by such a diagram: One
topic should not be treated in great
detail and others of equal impor-
tance hardly mentioned. The
breadth and depth should fit users’
needs—all relevant material in-
cluded, no unnecessary redundan-
cies, and sufficient detail to allow

Information Design Principles

direction. The users always know
where they are, where they have
been, and where they are going.
Indexes and headings make the
organization visible to users, so
that information is located easily
and quickly. Material is grouped
and sequenced to flow logically
and naturally from one topic to
another. A top-down approach is
used, to provide an overall struc-
ture before confusing users with
details. Introductions and sum-

oFormat makes the information
understandable through

and illustrations. Language

to one half of the brain—the ver-
bal, linear side. Simple vocabulary
and short, direct sentences make
for ease of understanding. Ilustra-
tions speak to the other half of the
brain—the nonverbal, spatial side.
Mustrations are most effective
when they are near the relevant
text and are keyed to it through
call-outs and highlights. Working

users to understand the explana- maries tie pieces together both for- together, words and illustrations
tion or perform the job. ward and backward, and reinforce present the whole “picture” as
oOrganization gives shape and for long-term memory. neither can alone.

March 1981 € BYTE Publications Inc 37

covered here. What is necessary is
that a few key principles are made
clear,

The basic objective of information
design is usability. Whatever the user
intends to do—write a program, as-
semble a piece of hardware, learn
how a system works—the documen-
tation must serve this purpose.

Although this may sound trivial, if
you're writing a technical document,
it'’s surprising how easy it is to lose
sight of this overall requirement after
page 1. The presentation can become
an ego trip without your realizing it.
On the other hand, it's hard to go

wrong if you consistently keep the us-
ability objective in mind.

How do we determine if a docu-
ment is usable? Whatever the type of
document —operator's manual, main-
tenance procedure, reference manual,
training program—it has some pur-
pose. Its purpose may be to explain a
concept, describe the operation of a
piece of equipment, or guide a person
through an assembly procedure.

To be usable, the document must
take the users from a state of in-
complete knowledge about some sub-
ject to a condition of more complete
knowledge. If it's a procedure, the in-

* Buitt-in OVP

’Poworomsc»omodoumw
. 4 $24.95. Over 150,000 models tater,
‘Soyro sthonly $24.951 - ‘

)

Y

formation must guide the users
through the task. In any case, the
document must take them from
“here” to “there.”

That's what information design
does: It starts where the users are and
buiids step by step. The information
designer first 2shs whn the users are,
Then he puts himself in their place
and asks, “What will they under-
stand, with their experience? What is
their technical knowledge and
vocabulary? How can they best be
helped?”

Next, he builds step by step. He
breaks up complicated subjects into
simpler parts. He leads the users
gradually into new territory, helping
them make their own discoveries.
With each step their confidence grows
and they want to learn and do more,
At the end, the users know they have
succeeded —and, therefore, so has the
information designer.

The Elements of Information
Design

1If we are going to start where the
users are and build step by step we
need a plan of action. We nezd to
decide:

ewhat information to include in the
documeni

ehow to organize it

ehow to present it so it's understand-
able

8 115/230 VAC input We'll discuss these aspects under the
8 OVP Built-in headings of Conten!, Organization,
@ .05% Regulation and Format.
.. W 2Year Warranty
> B 2-Hour Bum-in Content

\ ~ B UL Recognized The content of a document is the
‘ - BCSACoertitied specific technical material contained
\ Get all the details on our in it. This should be carefully defined
Model HBS-3/OVP v 1:5 standard open rames by boundary lines set down by the in-

\ in our new 1981 catalog. formation designer.

IN-STOCK NATIONWIDE... FOR IMMEDIATE DELIVERY Content really has two_aspects:

s what information is included
AL Pusasore, AT Sams Enge m)m-sm S " Oy 526 44, o oes, Fachascs (breadth) and what is its level of
%ww“vumc% ,;,,)@ "’ °""‘ s,‘,,";,,“‘"‘ ‘mi:“’ detail (depth). A simple example will
L G m%*g‘,(mw A ',,'v’;‘g' N illustrate the important difference be-
lc-uua (333’ suev:: n‘“uwm Rat sm.»we ’m)n‘amuég- ATS %) tween breadth and depth: An opera-
Mmume ,(‘%m cw": v sn-oc(m)zss-mo Y. tor's manual for a computer system
m@&qm Deyton. Meriow Assac 75317%@ 73 OKLA. ?uu might tell you to “remove and replace

the printer's print wheel as
necessary.” The subject of print wheel
replacement is thus “covered” in the
manual; that is, in terms of breadth,
it is part of the content. However, the
lack of “how to" details may make
this information of little use to many

i A, CAL (213) 5563807 C:
1540, Montreal. Ouoboc Empro s-mqsu)w -6420, w"""ﬁ&
Ft. Lauderdaie, FLA, Reptronics (308)

Power-One. Inc. « Power One Drive « Camarilio, CA 93010
(805) 484-2008 « (805) 987-3801 « TWX 910-336-1297

SEE OUR COMPLETE PRODUCT LISTING IN EEM & GOLRBOON
38

‘44
{

printer users. Thus the proper depth
of information is not part of the con-
tent.

A good tool to help a writer of
documentation analyze breadth and

BREADTH

depth is a topic diagram (figure 1),
which is an arrangement of topics in
boxes at different levels, with lines
joining related topics. It serves a pur-
pose similar to that of an outline, but

SUBJECT OR
PROJECT
INTROOUCTION

DEPTH

ToPIC 1

TOPIC 2

|

11 12 13

2.2

Figure 1: A topic diagram is a useful tool for determining the breadth, depth and con-
sistency of a piece of wnting. Although similar in content to an outline, the topic
diagram provides a clearer visual check on how topics are handled. As shown, topics 1
and 2 are major topics at the same level. Neither is a subtopic of the other and both will
be treated equally when the writing is done. Subtopics represent breakdowns of each
major topic. As additional topics and subtopics are added the diagram can extend

downward and to the left and right

The 4601 Combo

¢ Punching speed: 75 Cps
Reading speed: up to 150 Cps

* RS-232-C serial interface

 Utilizes all types of Mylar® and
paper tape

+ Reliability: MTBF 100 milkion
characters

GNT Makes a Tape Punch Station and
a Tape Reader/Punch Combination.

Both are small, quiet, and econor"~al.
One of them will fit your needs exactly.

Contact your local dealer or call for complete specifications.

12 GNT AUTOMATIC INC.

1560 Trapelo Road, Waltham, MA 02154 (617) 890-3305 Telex: 923318

* Punching speed: 50 or
75 Cps

* RS-232-C serial interface

 Utilizes all types of Mylar® and
paper tape

* Reliability: MTBF 100 million

characters

March 1981 © BYTE Pubhcations Inc

39

provides an easier visual check on
such elements as breadth, depth, and
consistency of treatment.

In figure 1, topics 1 and 2 are major
topics at the same level in the

diagram. They might be two major

- components of a system, or groups of

software, or procedures. Neither is a
subtopic of the other and they will be
treated equally in the presentation.

Subtopics are shown under each
major topic: 1.1, 1.2, 1.3 under topic
1, and 2.1 and 2.2 under topic 2.
These represent breakdowns of each
major topic. The diagram can con-
tinue on down to further depths of
subdivision and can also be extended
to the left and right as additional
topics are added at a given level.

We can see that the breadth of the
topic diagram, particularly at the ma-
jor topic level, tends to indicate the
breadth of content. The depth of the
diagram indicates the depth of con-
tent. While this should not be con-
sidered an infallible guide, it is useful
in preliminazy planning.

Another use of a topic diagram is
that it gives an idea of consistency of
coverage. A glance at figure 1 will tell
the writer if topics at the same level
are being treated with some con-
sistency in how they are subdivided,
or if one topic is being pursued to
greater levels of detail than others.
Without such a guide, it's easy to
cover one topic in great detail and
give other topics at the same Jevel on-
ly token treatment or overlook them
completely.

Definition of content is as impor-
tant for what is not included as for
what is. Many technical documents
include irrelevant information. This
can be particularly annoying in pro-
cedural documents, when users are
trying to accomplish an exacting task.
They want to get on with it, but are
continually being interrupted with ex-
traneous remarks that belong in some
other part of the document or should
be left out entirely.

Figure 2 shows a topic diagram for
this article. As you can see, in addi-
tion to defining content, such a
diagram shows a preliminary
organization or structure.

Organization

To proceed step by step, we need to
know where we are going and a route
to get there. In other words, we need
structure, or organization. Informa-

tion must be grouped, sequenced, and
related in order to be understood.
Otherwise, it is merely a jumble of
disordered facts or ideas—a “shop-
ping list.” If we had to learn
everything by rote memory from
shopping lists, we’d be in big trouble.
Once a good structure is established,
all kinds of details can be hung on it
and they will be understood and
remembered.

Organization is also what makes
information in a document easily ac-
cessible. Accessibility depends on
both the overall structure of the docu-
ment and how this structure is made
visible to the user through indexing
and headings. If information is organ-
ized properly, the user will be able to
turn quickly to the information he
wants. Once there, he will be able to
continue with a minimum of routing
to other parts of the document.

The importance of structure or or-
ganization can be illustrated by a
very simple example—a telephone
book. Have you ever stopped to
think how useless a telephone book
would be if the names were listed ran-
domly rather than alphabetically?
The important aspects of structure or
organization include indexing and
headings, grouping and sequencing,
routing. and introductions and
reviews.

Indexing and Headings

Indexing and headings are the
means by which the organization of
the document is made easily visible to
users. A writer may actually have a
good organization, but if it is not
clear to users, it will not really have
served its purpose.

Indexing as used here includes both
the standard type of index found at
the end of a document and the table
of contents. The index should be set
up with the idea that users will
sometimes look for items alphabeti-
cally, as in a dictionary. Many items
that are too small or too specific to be
included in the table of contents are
made accessible with a good index.

Often a table of contents can be
usefully constructed in two parts: an
overall table in front and more de-
tailed tables with each major section
of the document. This avoids an un-
wieldy table up front. Figure 3 pro-
vides an example of a two-part table
of contents. The main table (on the
left in the figure) would appear in the
front of the document. Each major
section would start with its own table
of contents (on the right in figure 3)
showing the more detailed headings
and subheadings in the section.

A consistent set of headings serves
to make information accessible.
Headings also help users remember

— Y

WHAT IS 00D
DOCUM K?NTATION

T

INFORMATION
DESIGN

l

ELEMENTS OF
INFORMATION
DESIGN

-_. 1 1

CONTENT ORGANIZATION FORMAT

- L B

SUMMARY

Figure 2: A topic diagram written for this article.

March 1981 © BYTE Publications Inc

40

where they are, which is just as
important. Thus high-level headings
should be repeated frequently, for
example as a running head at the top
of each page. Having the relevant
headings always in front of the user
makes the structure visible, and de-
tails are then assimilated more easily.

Grouping and Sequencing

The overall organization of the
document is established by how the
content material is grouped and se-
quenced. Again, the topic diagram is

CONTENTS
LIST OF FIGURES
LIST OF TABLES

1 INTRODUCTION
SYSTEM COMPONENTS |

3 SYSTEM OPERATION
4 COMMUNICATIONS

]

e

useful during the planning stages in
making visible the planned organiza-
tion of the document.

Whether the document is pro-
cedural or descriptive, grouping of
the topics should be based on a
logical pattern and the relevance of
different items. For example, pro-
cedural tasks normally performed
together (such as the various steps re-
quired to start up a computer system)
should be grouped together. In a
system description, the individual
descriptions of system components

2. SYSTEM COMPONENTS

2.1 CENTRAL PROCESSING UNIT
CONTROL PANEL
MICROPROCESSOR
OIRECT MEMORY ACCESS

2.2 DISK DRIVES
ORIVE CONTROLS
NUMBER OF DRIVES
DRIVE COMBINATIONS

2.3 VIOEO TERMINAL
DISPLAY SCREEN
KEYBOARD

Figure 3: An example of a two-part table of contents. By using an overall table in the
front of the document, and a more detailed table later. an initial unwieldy table is
avoided where a user would be subjected to unwanted detail.

LONG - TERM MEMORY

Figure 4: Summaries and long-term memory. In the human brain, memory is divided
into short-term memory and long-term memory. Although the capacity of long-term
memory is large. all information must first pass through a short-term memory. When

writing. the inclusion of summaries, reviews,

and question-and-answer sections is an ef-

fective way of passing information into long-term memory.

March 1981 € BYTE Publications Inc

ce 9

41

would normally be grouped together,
as in the example table of contents
shown in figure 3.

Sequencing is one of the most
critical parts of the structure. The
user is being led step by step from the
known to the unknown, from the
simple to the complex. Here the top-
down structuring principle frequently
used in writing computer programs
also applies. The sequence should
begin at the top and give the readers
the big picture before engulfing them
with details. It is not unusual to begin
reading a document and find yourself
up to your ears in technical details
before you really know what's going
on,

Most equipment operations and
human activities have a natural or
normal sequence that should be
preserved in the documentation. For
example, you normally gather to-
gether all the tools and supplies re-
quired for an activity before starting;
therefore, this information should
logically precede the activity descrip-
tion. It is disconcerting to have to
stop in the middle of a task and run to
the hardware store to buy some item.

Routing

Once you start using a document it
is inconvenient to have to refer to
other parts of the document, or to
other documents. The more often you
are routed, and the more pages you
have to thumb through to get there,
the less useful the document. On the
other hand, if all information is
repeated at each point of need, a
bulky document can result. Obvious-
ly, judgment is required in weighing
these trade-offs. For example, you
wouldn't want to tell a user how to
solder a particular type of joint every
time it came up—you would set aside
a special section for this purpose.
However, if a safety precaution ap-
plies to a number of different tasks in
the document, it is better to accept
the redundancy and repeat the
precaution,

Introductions and Reviews

A general rule is to prepare users
for what is coming and to remind
them of where they have been. Pro-
ceeding through a document, users
may forget where they are, forget
what has gone before—and decide
they didn't really want to learn this
anyway. Information should be

N

wiid

Li ol

]
9
|
|
p
3
4

designed to help users relate
backward and forward and recognize
and retain key points along the way.

Further, readers need introductory
instructions to help them find and use
information. For example, the
numbering schemes for tasks or il-
lustrations, the use of safety symbols,
notes, cautions, and warnings, and
the treatment of information about
tools and supplies should be briefly
explained. If these instructions are
backed up by consistent information
presentation (see Format section),
users will quickly learn what to ex-
pect, no matter where they are in the
document.

Simple reviews at key points rein-
force information and help users re-

tain it in memory. Human memory,
to put it simply, consists of two parts,
“short-term” and “long-term.”’
Whereas capacity is very limited in
STM (short-term memory), the
capacity of LTM (long-term memory)
is large indeed. The catch is that in-
formation can get to LTM only
through STM. Summaries and re-
views and question-and-answer ses-
sions are effective ways of establish-
ing information firmly in LTM. This
important concept is illustrated in
figure 4.

Format

Format usually has the rather nar-
row meaning of “physical layout of
the page.” Here the term is meant also

R

to include the rules that govern text
and illustrations—that is, how infor-
mation is presented on a page.

The general rule is that language
and illustrations should work
together. Each is an effective way of
presenting certain kinds of informa-
tion, and relatively ineffective for
other kinds. When combined proper-
ly, they form a powerful presentation
technique.

People will readily admit that pic-
tures can do things that words cannot
and vice versa. And yet it is surpris-
ing how often we find ourselves
reading words, words, words, when a
visual or two would have helped the
presentation considerably. Many
ideas become clearer with an illustra-

LCOMPUTERS

ATARI
:’;‘w""‘""‘""""""""""""‘" Touch e Ao o an unbecroble Pice
NRZ-if 64K DD
HAZ- 64X Quod
HRZ-H 32K DD
HRZ-Il 32K Quod

AT Cabhil
~3u.?

miissmlig AL708

9 PO WUSLIRY

FOAL oaia) TO b6

ZENITH
The alkinone thar's backed by
109 w/4BK 2 10's ... §2149

oy
3k

PACS I
«ad CUL Y

-

R N T

Scottsdole“Systems

6730E.McDowellRoad #103. Scottsdale, Arizono 85257

= (602) 941-5856 =

Export prices slightly higher: TWX 910-950-0082 (IMEC SCOT)

Ry

HazeWine 1420
Hazekine 1500
ADMIA?

“1ve:

N 840 YCO/Ascn
T 823 MO Basic

L

tion, and some kinds of information

] ' can hardly be communicated at all
without one. If you want to tell some-
] one what something looks like, show

a diagram or a photograph.

It is known that the left and right
sides of the brain are quite different.
For most people, the left side is domi-
nant and works mostly with linear,
sequential logic (like a computer). It
is also the verbal side and controls
language.

The right side specializes in images,
music, pictures—it deals in spatial

I T [T

.

T

4 and visual concepts, in contrast to the
{ linear, verbal left brain. Schools,
i with their traditional emphasis on

verbal skills, have tended to neglect

the right side of the brain. People
who are less adept with their left
brain have suffered as a result. Ein-
stein, for example, was a poor stu-
dent in language, but had a great
ability to visualize (see figure 5).
The ideal combination is words

d pict king togeth h Figure S: The left and night sides of the human brain are very different. In most
and pictures working together, eac humans, the left side. which works mostly with linear and sequential logic, is dominant.
doing what it does best. In a pro- left side also controls verbal communications. The right side of the brain deals in
cedure, for example, words can tell spatial. visual. and more holistic concepts. One of the best ways of imparting informa-
readers what to do and how to do it; tion to the reader is through a combination of both words and pictures. thus enabling
pictures can tell them what it looks the reader to use both sides of the brain.

THE HARD EDGE

zIN SYSTEM PERFDRMANCE oo

2K BYTES PER SECOND, the 833 ¢

dnmﬁully increases performance *
.. of any 8100 computer system. With

a dollar/byte price tag lower §

“-<ghanany available subsystem,}
“'{blﬂhﬂnmm EDGE you

Aoed. Call or write ADES fork

sdotalled 833 apacifications aand®
T N B aformation on our expanding

. -t R Y A B . line of Mass Storage Controllers

and Subsystems.
CP/M registered

T™ of Digital Research
See us In Booth #1620 WEST COAST COMPUTER FAIR

ADAPTIVEDATA & ENERGY SYSTPMS * 2627 Pomona Blvd«Pomona, CA91768+(714)594-5858
43

March 1981 € BYTE Publications inc e p -
SN TR PRAGA Ruaske

-
&

like and where it is. For descriptive
material, words and diagrams will do
a good job of explaining and describ-
ing, provided they are working
together. When you decide to use pic-
tures to communicate with readers,
follow the flow through step by step.
Don’t be content with offering an oc-
casional “amazement diagram” and a
“see figure so-and-s0.” You can
perhaps wake up the right half of the
reader’s brain this way, but to get it
working with the left half as a
unit—whole-brain learning —make
the words and pictures work
together.

Here are some guidelines on how to
do this, discussed under the following
headings: keying text to illustrations,
positioning text and illustrations, and
limiting information density.

Keying Text to Illustrations

The mutual reinforcement of text
and illustrations can be strengthened
by keying the text to the illustration.
This can be done by a liberal use of
highlights and call-outs, which are
“talked to” in the text.

For complicated diagrams, an in-
dexing system can be used. An exam-
ple of this common technique is
shown in figure 6. Three parts of an
electrical unit are designated A, B,
and C in the picture on the right.
These same letters are used in the text
on the left to refer to these specific
parts. This method can be used with
fairly complex diagrams without con-
fusing the reader. The alphabetical or
numerical symbols take up little room
on the diagram and can be ordered

(for example, clockwise in figure 6) to
make it easy to locate any symbol.

Highlights and call-outs help the
user zero in on the main items of in-
terest in a picture. A heavy outline or
shading or color, together with a call-
out of the item of interest, can make
the text and illustration mutually sup-
port each other and help the user
relate illustration to text.

Consistent, standard nomenclature
should be used in linking text to il-
lustration, and indeed throughout the
document. Information becomes less
accessible and less understandable if
the same item is referred to by dif-
ferent names.

Positioning Text and Illustrations

Because the text and related pic-
tures should work together, they
should be positioned close together.
Ideally, the user should be able to
work back and forth between text
and illustration without having to
turn a page. While this ideal is
sometimes impractical, it is usually
possible to keep the illustration close
to the relevant text. For important,
frequently referenced figures, fold-
outs are sometimes the answer.

Limiting Information Density
Information is like food. If readers
eat too fast, or too much at one time,
they get indigestion. If information is
presented too fast or in too large
doses, readers will get confused. This
is because of the limited capacity of
short-term memory. Therefore, like
food, information must be broken up
into "bite-size” pieces to be digestible.

Figure 6: Keying text to illustrations. The mutual reinforcement of text and illustrations
(as shown in figure 5) can be strengthened by keying the text to the illustrations through
the use of highlights and call-outs which are “talked to” in the text.

March 1981 © BYTE Publcations Inc

44

Good format does this.

Language should be simple and
direct. Only words the reader
understands should be used, with
new words explained as they are in-
troduced. Explanations are easier to
read and understand if sentences are
short and simple, and if words have
few syllables.

Illustrations should not be cluttered
with unnecessary information. If they
are too “busy,” pictures become con-

(7a) POWER

1

fusing and are less useful. To avoid a
profusion of details, illustrations can
be used in a progression from simple
to more complex. This is related to
top-down sequencing. An initial
overall figure can give the “big pic-
ture,” which is easy to understand
and serves as a beginning structure
for proceeding to more detailed il-
lustrations. In forming such progres-
sions, it's important to preserve the
relative locations of the parts of

~

DATA BUS

1 1

ROM

— o sus

— TN T
r-—~ CONTROL

MEMORY Pi0

- S

CLOoCK ADDRESS BUS

o

CONTROL LINES)

~~

(7b)

whatever is being pictured. For exam-
ple, if a simple block diagram of a
microprocessor leads off the series,
subsequent more detailed diagrams
and schematics should show the
various parts of the blocks in the
same relative positions as the original
block. An example is shown in figure
7. Note that the lower detailed
diagram preserves the relative posi-
tions, established by the upper figure,
of the major parts of the system.

Earlier we said that microprocessor
literature is suffering from a bad case
of “the jargons.” However, you'll see
by now that there is much more to
good documentation than avoiding
jargon. You probably have had the
experience of reading something and
finding that it was very difficult to
follow, even though you seemed to
understand all the words. In this case,
the author managed to avoid
technical terminology but failed in
other impor:ant areas. Good
technical dc.umentation requires a
highly dis<; piined approach, and that
approach is provided by information
design. Those who adopt a go-as-
you-please approach may score a suc-
cess now and then, but it will be by
accident. They have no way of know-
ing whether they have really reached
their audience. In many cases they
have not.m

RESTART

»
o

Tsc

MPU

ROM A7

ABl—
Al0 cs g

Ald Al
cs S

Al2 A0

cs c

cs g C$

]

AO-9 AO-6

Al2 RES

Al3 PO "

Mee ot

cLock g2 1
VMA R/W -+

VMA 02

Figure 7: To avoid reader confusion, illustrations should be used in a progression from less detail to more. An initial block diagram
(7a) can give the overall picture before going into greater detail (7b). When forming these progressions, it's important to keep parts in

the same relative positions.

March 1981 € BYTE Publcations Inc

45

